DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT-1st , 2019-20 Sub: MATHEMATICS, Course – C12

Full Marks: 10

Time: 30 m.

- Answer any five questions: $(2 \times 5 = 10)$ 1. Prove that the mapping $f: U(16) \rightarrow U(16)$ defined by $f(x) = x^3$ is an Automorphism.
 - 2. Prove that a group *G* is Abelian iff $G' = \{e_G\}$.
 - 3. Prove that Z(G) is a characteristic subgroup of G.
 - 4. Find the order of Inn(G) where $G = S_3$.
 - 5. In $\mathbb{Z}_{30} \times \mathbb{Z}_{60}$ find two subgroups of order 12.
 - 6. Find the number of non-isomorphic Abelian group of order 360.
 - 7. Find the order of (10,15,24) in $\mathbb{Z}_{12} \times \mathbb{Z}_{30} \times \mathbb{Z}_{40}$.
 - 8. Find all Abelian groups of order p^3q^2 , where p, q are distinct primes.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – V , INTERNAL ASSESSMENT-2nd , 2019-20 Sub: MATHEMATICS, Course – C12

Full Marks: 10 Answer any five questions: Time: 30 m. $(2 \times 5 = 10)$

- 1. Let H be a subgroup of order 11 and index 4 of a group G. Show that H is a normal subgroup of G.
- 2. Find the class equation for s_3 .
- 3. Let G be a finite group that has only two conjugate classes. Show that |G|=2.
- 4. Show that A_4 has no subgroup of order 4.
- 5. Let G be a noncommutative group of order p^3 , p a prime. Prove that |Z(G)| = P.
- 6. How many elements of order 7 are there in a group of order 28?
- 7. Show that every commutative group of order 36 contains an element of order 6.
- 8. Prove Cayley's theorem by using extended cayley's theorem.